Lycodine-Type Alkaloids from *Lycopodium casuarinoides*

by **Sheng Yin**, **Cheng-Qi Fan**, **Xiao-Ning Wang**, and **Jian-Min Yue***

State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China

(phone: +86-21-50806718; fax: +86-21-50806718; e-mail: jmyue@mail.shcnc.ac.cn)

Two new lycodine-type alkaloids, huperzinine *N*-oxide (**1**) and 8,15-dihydrohuperzinine (**2**) as well as five known compounds, huperzinine (**3**), huperzine B (**4**), huperzine D (**5**), *N*-demethylhuperzinine (**6**), and *b*-obscurine (**7**), were isolated from the club moss *Lycopodium casuarinoides*. The structures of **1** and **2** were elucidated by spectroscopic methods and chemical transformation. The absolute configuration of **1** was established by chemical correlation with **3**, and that of **2** was determined by its CD spectrum.

Introduction. – *Lycopodium* alkaloids are a group of chemically and pharmacologically interesting secondary metabolites occurring in the family Lycopodiaceae [1], and many of them continue to be the hot points in the aspects of biogenesis [1a] [2] and total synthesis [3]. Since the discovery of potent selective acetylcholinesterase inhibitors huperzines A and B from *Huperzia serrata* [4], a series of research work conducted for their active analogs has led to the identification of over 200 *Lycopodium* alkaloids from *ca.* 54 species of *Lycopodium* (*sensu lato*) [1b]. The present research work on *Lycopodium casuarinoides* Spring, a Chinese folk medicine, allowed the isolation of two new lycodine-type alkaloids, huperzinine *N*-oxide (**1**) and 8,15-dihydrohuperzinine (**2**), along with five known ones, huperzinine (**3**), huperzine B (**4**), huperzine D (**5**), *N*demethylhuperzinine (6), and β -obscurine (7). This paper focuses on the isolation and structure elucidation of **1** and **2**.

Results and Discussion. – Huperzinine *N*-oxide (**1**) was obtained as a white powder. The molecular formula $C_{17}H_{22}N_2O_2$ was established by HR-ESI-MS (m/z 287.1747, $[M+H]^+$). The spectral data implied that alkaloid 1 was likely a derivative of huperzinine (**3**), a major component also isolated from this plant. Compared with compound **3**, there was one more O-atom in the molecular formula of **1**, which could be attached to the tertiary N-atom. Chemical transformation of huperzinine (**3**) to huperzinine *N*oxide (**1**) by 3-chloroperbenzoic acid oxidation confirmed the structure of **1**, including its absolute configuration. The full assignment of the ${}^{1}H$ - and ${}^{13}C$ -NMR data of alkaloid **1** was achieved by comparing them with those of compound **3** and was assisted by using HSQC data (*Table*).

The characteristics of an α -pyridinone (=pyridin-2-(1*H*)-one) were revealed by the spectra of 1 including UV (λ_{max} (MeOH): 306 and 234 nm), IR (1664, 1616, 1556 and 1468 cm⁻¹), and ¹H-NMR (2*d*) at δ 9.45, 6.42 *J*=9.7 Hz)) [4]. An olefinic Me group at δ (H) 1.60 (*s*), 2 Me(N) groups at δ (H)

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

3.18 (*s*) and 3.28 (*s*), and an *AMX* spin system for the CH₂=CH moiety at δ (H) 5.96 (*ddd*, *J*=17.1, 10.2, 10.2 Hz), 5.26 (*d*, *J*=10.2) and 5.25 (*d*, *J*=17.1), as well as the corresponding carbon signals (*Table*) were also observed. The down-field shifted signals of $C(13)^1$ at $\delta(C)$ 77.6 and the Me₂N groups at $\delta(C)$ 57.1 and 55.3 were diagnostic of the amine oxide moiety.

Also 8,15-dihydrohuperzinine (**2**) is a white powder. HR-EI-MS of **2** exhibited a molecular-ion peak at *m/z* 272.1884, which is two mass units more than that of **3,** and matched the molecular formula $\rm C_{17}H_{24}N_{2}O.$ The UV, IR as well as the $^1\rm H\text{-}NMR$ spectra (*Table 1*) of **2** also indicated the presence of an *a*-pyridinone moiety. The structure of alkaloid **2** was shown to be that of a 8,15-dihydrogenated derivative of **3**. The relative configuration of **2** (*Fig. 1*) was deduced from a ROESY experiment, and the absolute configuration (7*S*,12*R*,13*R*,15*R*) 1) was assigned by comparing the CD spectrum of **2** (*Fig. 2*) with that of β -obscurine (**7**), whose absolute configuration had been determined before [5].

The ¹H-NMR signal of the olefinic H $-C(8)^1$ of huperzinine (3), $\delta(H)$ 5.35 was not observed in the spectrum of **2**, and the signal of Me-C(16) of **2** was shifted upfield to $\delta(H)$ 0.85 (*d*, *J*=6.0 Hz) as compared to 3 (δ (H) 1.53, (s)), suggesting the absence of a C(8)=C(15) bond in **2**. Two additional C-signals at δ (C) 43.9 and 29.0 representing a tertiary and a secondary sp³ C-atomconfirmed the presence of a CH₂(8)–CH15 moiety of **2**. The ¹H-NMR spectrum of **2** showed two aromatic proton signals at $\delta(H)$ 7.66 (*d*, $J=9.4$ Hz) and 6.41 (*d*, $J=9.4$ Hz) assignable to H-C(3) and H-C(2) of the *a*-pyridinone ring, respectively. The signals for two Me(N) groups overlapped at $\delta(H)$ 2.43 (*s*, 6 H), and the signals of a CH₂=CH moiety at δ (H) 5.24 (*d*, *J*=17.0 Hz), 5.02 (*d*, *J*=10.1 Hz), and 6.00 (*ddd*, *J*=17.0, 10.1, 10.1 Hz) were attributed to $H_A-C(10)$, $H_B-C(10)$, and $H-C(11)$, resp.. The signal at $\delta(H)$ 2.83 (*dd*, $J=10.1$, 3.3Hz) which coupled with H-C(11) was assigned to H-C(12). The correlations H-C(7)/ $H_a-C(6)$, $H-C(7)/H_{exo}-C(8)$, and Me(16)/H-C(15) were also observed in the ¹H₁¹H-COSY. The ¹Hand 13 C-NMR signals (*Table*) of 2 were assigned by a combination of 13 C-NMR, ^{1}H ,¹H-COSY and HSQC data.

¹⁾ Trivial numbering; for systematic names, see *Exper. Part.*

	1		$\mathbf{2}$		3	
	$\delta(H)^a$		$\delta(C)^b$) $\delta(H)^c$)		$\delta(C)^d$) $\delta(H)^a$)	$\delta(C)^b$
C(1)		165.2		165.6		165.1
$H - C(2)$	6.42 $(d, J=9.7)$	117.6	6.41 $(d, J=9.4)$	118.6	6.45 $(d, J=9.5)$	117.6
$H - C(3)$	9.45 $(d, J=9.7)$	143.9	7.66 $(d, J=9.4)$	143.7	7.65 $(d, J=9.4)$	140.1
C(4)		114.3		120.7		118.7
C(5)		143.3		146.6		142.8
H_{a} –C(6)	3.02 (dd, $J=17.8, 5.2$)	29.0	2.95 $(dd, J=18.5, 6.9)$	31.0	2.98 (dd, $J=17.5, 5.0$)	29.1
$H_6-C(6)$	2.46 $(d, J=17.8)$		2.26 $(d, J=18.5)$		$2.34 - 2.45$ (<i>m</i>)	
$H - C(7)$	2.56 (br. $d, J=3.9$)	39.5	$2.02 - 2.07$ (<i>m</i>)	39.8	$2.38 - 2.43$ (<i>m</i>)	38.7
$H_{\text{exo}}-C(8)$	5.38 (br. d, $J=4.0$)	123.4	$1.25 - 1.28$ (<i>m</i>)	43.9	5.35 (br. d, $J=5.2$)	124.4
H_{endo} – C(8)			$1.66 - 1.70$ (<i>m</i>)			
$H_A-C(10)$	5.25 $(d, J=17.1)$	118.7	5.24 $(d, J=17.0)$	116.6	5.21 $(dd, J=17.1, 1.9)$	116.3
$HB-C(10)$	5.26 $(d, J=10.2)$		5.02 $(d, J=10.1)$		5.01 (dd, $J=10.0, 1.9$)	
$H - C(11)$	5.96 (ddd, $J=17.1$,	138.0	$6.00 (ddd, J = 17.0, 10.1, 143.1)$		5.95 (ddd, $J=17.1$, 10.0, 142.4	
	10.2, 10.2)		10.1)		10.0)	
$H-C(12)$	2.78 $(dd, J=10.2, 3.9)$	46.8	2.83 (dd, $J=10.1, 3.3$)	49.0	2.85 $(dd, J=10.0, 3.8)$	45.8
C(13)		77.6		63.0		59.8
H_{evo} –C(14)	2.84 (br. s)	40.3	$1.62 - 1.66$ (<i>m</i>)	49.0	1.61 $(d, J=17.2)$	44.4
H_{endo} –C(14)	2.84 (br. s)		$1.31 - 1.36$ (<i>m</i>)		2.79 $(d, J=17.1)$	
$C(15)$ or		134.0	$1.19 - 1.24$ (<i>m</i>)	29.0		134.3
$H-C(15)$						
$Me-C(16)$	1.60 (s)	22.8	$0.85(d, J=6.0)$	22.8	1.53(s)	22.9
Me _A N	3.18(s)	57.1	2.43 (s)	40.4	2.41 (s)	39.5
Me _B N	3.28(s)	55.3	2.43(s)	40.4	2.41(s)	39.5

Table. *¹ H-* and *13C*-*NMR Data of Compounds* **1**–**3.** *d* in ppm, *J* in Hz. Trivial numbering

^a) Measured at 400 MHz in CDCl₃. ^b) Measured at 100 MHz in CDCl₃. ^c) Measured at 400 MHz in CD₃OD. $^{\text{d}}$) Measured at 100 MHz in CD₃OD.

Assuming a chair conformation for the six-membered ring A (see *Fig. 1*), the CH₂=CH moiety at C(12) and Me-C(15) are equatorially oriented as shown by the ROESY correlations $H-C(12)/H_{\text{evo}}$ C(8) and $H_{exo}-C(14)$, Me(16)/ $H_{exo}-C(8)$ and $H_{endo}-C(8)$. The ROESY interactions $H_{endo}-C(8)$ / $H_{β}$ $C(6)$, H-C(7)/H_a-C(6) and H_b-C(6), and MeN/H-C(12) and H-C(11) indicated that H-C(7) and $Me₂N-C(13)$ were equatorially positioned at ring A. The six-membered ring B was also assigned to be in a chair-like conformation. In the CD spectrum of **2** and the related **7** (*Fig. 2*), the *Cotton* effects corresponding to UV absorptions around 221 and 310 nm for both compounds closely matched, indicating that their absolute configurations are the same.

The five known alkaloids, huperzinine (**3**) [6] [7], huperzine B (**4**) [4], huperzine D (**5**) [7], *N*-demethylhuperzinine (**6**) [6], and *b*-obscurine (**7**) [5] were also isolated from this plant and structurally identified by comparison with literature data.

Financial support of the *National Natural Science Foundation* (for *J. M. Yue*, 30025044) and the *Foundation from the Ministry of Science and Technology* (for *J. M. Yue*, 2002CB512807) are gratefully acknowledged. We thank professor *Shi-Man Huang*, Department of Biology, Hainan University, for the collection and identification of the plant material.

Fig. 1. *Key ROESY correlations observed for* **2**

Experimental Part

General. All solvents used were of anal. grade (*Shanghai Chemical Plants*, Shanghai, P. R. China.). Column chromatography (CC): silica gel (200–300 mesh), silica gel *H60*, *C18* reversed-phase silica gel (250 mesh, *Merck*), and *MCI* gel (*CHP20P*, 75 –150 mm, *Mitsubishi Chemical Industries Ltd.*). TLC: precoated silica gel *GF254* plates (*Qingdao Haiyang Chemical Plant,* Qingdao, P. R. China). Optical rotation: *Perkin-Elmer 341* polarimeter. UV Spectra: *Hitachi U-2010 l*max (log *e*) in nm. CD spectrum: *Jasco J-810* instrument. IR Spectra: *Perkin-Elmer 577* spectrometer; in cm⁻¹ NMR Spectra: *Bruker AM-400* spectrometer. EI-MS (70 eV): *Finnigan-MAT 95* mass spectrometer in *m*/*z* (rel. %).

Plant Material. The club moss *Lycopodium casuarinoides* SPRING. was collected in Hainan province, P. R. China, in July 2003. The plant was authenticated by Prof. *Shi-Man Huang*, Department of Biology, Hainan University. A voucher specimen has been deposited in the Shanghai Institute of Materia Medica (Accession number: LC-2004–1Y).

Extraction and Isolation. The club moss (25 kg) of *L. casuarinoides* was extracted with 95% EtOH at r.t. $(3 \times 50 \text{ l}, \text{each for } 5 \text{ days})$. After evaporation, the residue (958 g) was suspended in 41 acidic H₂O (adjusted with $2N H_2SO_4$ to pH *ca.* 1–2), and then immediately partitioned with CHCl₃ (3×2 l) to remove the nonalkaloid portion. The acidic soln. was adjusted to pH *ca*. 10 with sat. Na₂CO₃ soln. and extracted with CHCl₃ (3×2 l) and then with BuOH (3×1 l). The CHCl₃-soluble part (5.2 g) was subject to CC (*RP*-18 silica gel, H₂O/MeOH 1:0 \rightarrow 0:1): *Fractions 1* and 2. *Fr. 1* (4.1 g) was kept at r.t. in MeOH to afford crystals of huperzinine (**3**; 3.2 g). The mother liquor was resubjected to CC (silica gel, CHCl3/MeOH 10 : 1): huperzine B (**4**; 246 mg) and huperzine D (**5**; 320 mg). *Fr. 2* (0.8 g) was purified by CC (amino silica gel, cyclohexane/AcOEt $1:0 \rightarrow 0:1$) 8,15-dihydrohuperzinine (2; 8 mg), β -obscurine (7; 11 mg), and *N*-demethylhuperzinine (**6**; 511 mg). The BuOH-soluble part (12 g) was separated by CC (*MCI*, H2O/MeOH 7 : 3): huperzinine *N*-oxide (**1**; 30 mg).

Huperzinine N-*Oxide* (=*(5*R*,9*R*,11*R*)-5-(Dimethyloxidoamino)-11-ethenyl-5,6,9,10-tetrahydro-7 methyl-5,9- methanocycloocta*[b]*pyridine-2(1H)-one*; **1**). White powder. $[\alpha]_D^{20} = -8.1$ (*c*=0.735, MeOH). UV (MeOH): 306 (3.84), 234 (4.00). IR (KBr): 3423, 2919, 1664, 1616, 1556, 1468, 1425, 1317, 1101, 941, 833. ¹ H- and 13C-NMR: *Table*. ESI-MS: (pos.) 287.1 (41, [*M*+H]⁺), 226.2 (100, $[M-NO]^+$). HR-ESI-MS: 287.1747 ($[M+H]^+$, C₁₇H₂₃N₂O₂⁺; calc. 287.1760).

Fig. 2. *CD and UV spectra of* **2** *and* **7**

8,15-Dihydrohuperzinine (=*(5*R*,7*R*,9*S*,11*R*)-5-(Dimethylamino)-11-ethenyl-5,6,7,8,9,10-hexahydro-7-methyl-5,9-methanocycloocta[b]pyridine-2(1H)-one;* 2). White power. $\lbrack a \rbrack_{D}^{20} = -68$ (c=0.11, MeOH). UV (MeOH): 310 (3.82), 221 (4.08). IR (KBr): 3423, 2919, 1668, 1621, 1556, 1460, 1413, 1384, 1126, 1047, 916. ¹ H- and 13C-NMR: *Table*. EI-MS: 272 (65, *M*⁺), 257 (100), 229 (36), 215 (97), 205 (37), 189 (28), 163 (32), 146 (15). HR-EI-MS: 272.1884 (M^+ , C₁₇H₂₄N₂O⁺; calc. 272.1889).

Oxidation of Huperzinine (3). To a stirred soln. of $3(10 \text{ mg})$ in CHCl₃ (2 ml) at 0° , 3-chloroperbenzoic acid (12 mg) was added. The mixture was stirred at r.t. for 3 h and then evaporated. The resulting yellow solid was then subjected to CC (silica gel, CHCl3/MeOH 10 : 1): ${\bf 1}$ (8 mg). ¹H-NMR and [$a]_{\rm D}$: identical to those of natural **1**.

REFERENCES

- [1] a) W. A. Ayer, *Nat. Prod. Rep.* **1991**, *8*, 455; b) X. Q. Ma, D. R. Gang, *Nat. Prod. Rep.* **2004**, *21*, 752.
- [2] J. Kobayashi, H. Morita, in 'The Alkaloids', Ed. G. A. Cordell, Academic Press, New York, 2005, Vol. 61, p. 292; W. A. Ayer, L. S. Trifonov, in 'The Alkaloids', Ed. G. A. Cordell and A. Brossi, Academic Press, New York, 1994, Vol. 45, p. 233; D. B. Maclean in 'The Alkaloids', Ed. A. Brossi, Academic Press, New York, 1985, Vol. 26, p. 241; T. Hemscheidt, I. D. Spenser, *J. Am. Chem. Soc.* **1993**, *115*, 3020.
- [3] C. F. Yen, C. C. Liao, *Angew. Chem., Int. Ed.* **2002**, *41*, 4090; J. Cassayre, F. Gagosz, S. Z. Zard, *Angew. Chem., Int. Ed.* **2002**, *41*, 1783; C. K. Sha, F. K. Lee, C. J. Chang, *J. Am. Chem. Soc.* **1999**, *121*, 9875; J. P. Williams, D. R. St. Laurent, D. Friedrich, E. Pinard, B. A. Roden, L. A. Paquette, *J. Am. Chem. Soc.* **1994**, *116*, 4689; G. C. Hirst, T. O. Johnson, L. E. Overman, *J. Am. Chem. Soc.* **1993**, *115*, 2992.

HELVETICA CHIMICA ACTA – Vol. 89 (2006) 143

- [4] J. S. Liu, Y. L. Zhu, C. M. Yu, Y. Z. Zhou, Y. Y. Han, F. W. Wu, B. F. Qi, *Can J. Chem*. **1986**, *64*, 837.
- [5] W. A. Ayer, J. A. Berezowsky, G. G. Iverach, *Tetrahedron* **1962**, *18*, 567.
- [6] Y. C. Shen, C. H. Chen, *J. Nat. Prod*. **1994**, *57*, 824.
- [7] J. S. Liu, M. F. Huang, *Phytochemistry* **1994**, *37*, 1759.

Received October 5, 2005